

STUDIO IDROLOGICO IDRAULICO A SUPPORTO DEL REGOLAMENTO URBANISTICO

Il Sindaco Lorenzo Bacci Il Responsabile del Procedimento Arch. Leonardo Zinna

Studio Tecnico Associato di Ingegneria e Progettazione idraulica e marittima

Via G. Civinini, 8 – 57128 Livorno Tel/Fax 0586 372660 E-mail: info@primaingegneria.it;

www.primaingegneria.it Studio Certificato ISO 9001:2008

Ing. Pietro Chiavaccini

Ing. Maurizio Verzoni

Ing. Nicola Buchignani

Ing. Nicola Verzoni

Cartografia e gis Arch. Marcella Chiavaccini

R4-STUDIO INTEGRATIVO DEL CANALE SCOLMATORE

Rev.	Cod. Elaborato	Data	Redatto	Verificato	Approvato
1	PT50-13-COL-R04-01	Lug. 2015	M. Chiavaccini	P. Chiavaccini	M. Verzoni
0	PT50-13-COL-R04-00	Giu. 2015	M. Chiavaccini	P. Chiavaccini	M. Verzoni

INDICE

1.	INTRODUZIONE	. 4
2.	STUDIO IDRAULICO	
	2.1 ANALISI IN MOTO PERMANENTE	
	2 1 1 VERIFICHE DELLA CAPACITÀ	17

1. INTRODUZIONE

A seguito delle valutazioni effettuate dal gruppo di lavoro è emersa la necessità di approfondire le problematiche del canale scolmatore dell'Arno.

Il canale Scolmatore presenta una lunghezza complessiva di 28,3 km e, si sviluppa in sinistra idrografica dell'Arno; dalla presa, costituita da una soglia sfiorante posta subito a valle della confluenza dell'Era con l'Arno, segue la direzione Sud-Ovest, fino a sfociare in mare circa 1 km a Nord del porto di Livorno.

Al momento della realizzazione dello Scolmatore d'Arno era stata ipotizzata una portata di progetto complessiva pari a 1.400 mc/sec, di cui 500 mc/sec provenienti dai comprensori di Fucecchio e Bientina e 900 mc/sec derivabili dal Fiume Arno. Gli affluenti principali sono: il Canale di Usciana, il Fosso Zannone, I torrenti Rotina, Rio Pozzino e Riopozzale, il T. Orcina, il T. Crespina, Il Fossa Nuova Meridionale, Il Canale dei Navicelli e gran parte dei corsi d'acqua oggetti del presente studio. T. Tora, F. Isola, F. Acquasalsa-Acquechiare, F. Torretta-Antifossetto, Fossa Chiara, Emissario Bientina, Fossa Nuova

Lo studio dell'"Adequamento idraulico del canale Scolmatore d'Arno" della Provincia di Pisa, al suo stadio definitivo e per le condizioni attuali ha evidenziato tre scenari di portata:

piene nel solo bacino del F. Arno. Gli idrogrammi di piena delle portate derivate dallo Scolmatore sono indicate in Figura 1 Figura 2 e Figura 3. I picchi di piena si registrano dopo circa 24h dall'inizio dell'evento per durate di circa 18-24h

Figura 1. Idrogramma di piena per Tr=30 anni delle portate derivate dall'Arno

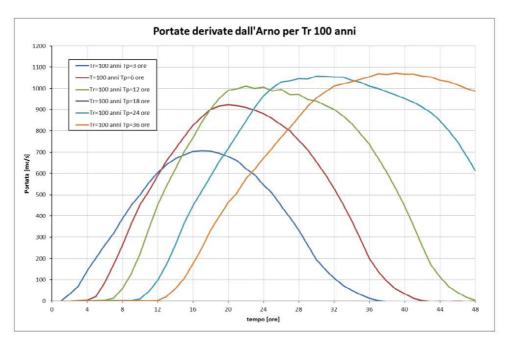


Figura 2. Idrogramma di piena per Tr=100 anni delle portate derivate dall'Arno

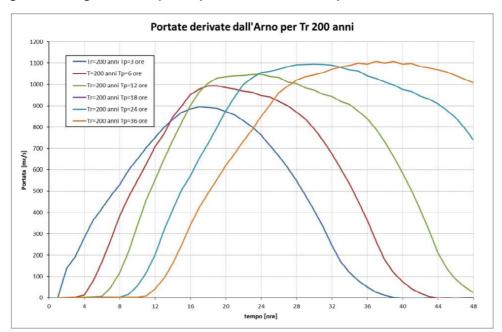


Figura 3. Idrogramma di piena per Tr=200 anni delle portate derivate dall'Arno

- piene nel solo bacino del Canale Scolmate. Le portate massime calcolate nei vari tratti di interesse del presente studio sono indicati nelle tabelle che seguono. Anche in questo caso il contributo si massimizza per durate di pioggia di 24 h, comunque inferiori al tempo di corrivazione dei singoli bacini esaminati che hanno durate critiche inferiori a 6h

Tabella 1: Portate nello Scolmatore dell'Arno senza il contributo delle portate derivate dall'Arno per Tr=30 anni

TRATTO Tp=3h Tp=6h Tp=12h Tp=24h Tp=36h

TRA ORCINA ED ISOLA	257	411	620	508	413
TRA ISOLA E TORA	268	427	686	540	437
TRA TORA E FOSSA NUOVA	350	529	855	644	552
TRA FOSSA NUOVA ED EMISSARIO	363	547	855	672	551
TRA EMISSARIO E FOCE	552	754	1134	907	786

Tabella 2: Portate nello Scolmatore dell'Arno senza il contributo delle portate derivate dall'Arno per Tr=100 anni

TRATTO	Tp=3h	Tp=6h	Tp=12h	Tp=24h	Tp=36h
TRA ORCINA ED ISOLA	354	551	655	589	547
TRA ISOLA E TORA	363	577	748	636	582
TRA TORA E FOSSA NUOVA	453	709	983	773	690
TRA FOSSA NUOVA ED EMISSARIO	469	723	1024	813	727
TRA EMISSARIO E FOCE	668	957	1331	1093	987

Tabella 3: Portate nello Scolmatore dell'Arno senza il contributo delle portate derivate dall'Arno per Tr=200 anni

TRATTO	Tp=3h	Tp=6h	Tp=12h	Tp=24h	Tp=36h
TRA ORCINA ED ISOLA	429	600	678	602	579
TRA ISOLA E TORA	463	656	788	658	621
TRA TORA E FOSSA NUOVA	643	832	1059	817	744
TRA FOSSA NUOVA ED EMISSARIO	781	860	1106	863	787
TRA EMISSARIO E FOCE	1150	1103	1444	1165	1067

- piene combinate tra bacini propri dello Scolmatore e portate derivate dall'Arno. nel solo bacino del Canale Scolmate. Le portate massime calcolate nei vari tratti di interesse del presente studio sono indicati nelle tabelle che seguono.

Tabella 4: Portate nello Scolmatore dell'Arno con il contributo delle portate derivate dall'Arno per Tr=30 anni

TRATTO	Tp=3h	Tp=6h	Tp=12h	Tp=24h	Tp=36h
TRA ORCINA ED ISOLA	534	802	1146	1221	1192
TRA ISOLA E TORA	534	802	1148	1223	1197
TRA TORA E FOSSA NUOVA	551	821	1178	1271	1256
TRA FOSSA NUOVA ED EMISSARIO	560	833	1199	1294	1279
TRA EMISSARIO E FOCE	721	1002	1393	1498	1486

Tabella 5: Portate nello Scolmatore dell'Arno con il contributo delle portate derivate dall'Arno per Tr=100 anni

TRATTO	Tp=3h	Tp=6h	Tp=12h	Tp=24h	Tp=36h
TRA ORCINA ED ISOLA	848	1104	1485	1558	1585
TRA ISOLA E TORA	849	1104	1486	1569	1615
TRA TORA E FOSSA NUOVA	867	1123	1509	1653	1718
TRA FOSSA NUOVA ED EMISSARIO	878	1137	1533	1685	1751
TRA EMISSARIO E FOCE	1045	1312	1731	1925	1994

Tabella 6: Portate nello Scolmatore dell'Arno con il contributo delle portate derivate dall'Arno per Tr=200 anni

TRATTO	Tp=3h	Tp=6h	Tp=12h	Tp=24h	Tp=36h
TRA ORCINA ED ISOLA	1051	1278	1542	1626	1672
TRA ISOLA E TORA	1051	1278	1543	1672	1710

TRA TORA E FOSSA NUOVA	1068	1302	1566	1814	1828
TRA FOSSA NUOVA ED EMISSARIO	1145	1320	1595	1854	1867
TRA EMISSARIO E FOCE	1412	1510	1807	2122	2131

1.1 DATI FORNITI DALL'AUTORITA' DI BACINO DELL'ARNO

Il citato progetto di sistemazione del F. Arno della Provincia di Pisa non fornisce andamento delle onde di piena per tutti i tratti interessati in particolare del comportamento misto (Scolmatore+Arno). Dati delle onde di piena sono stati forniti dall'Autorità di Bacino dell'Arno che hanno indicato le portate prelevate dalla paratie a Pontedera per eventi di durata 24 e 36 h riferite a Tr=200 anni e Tr=30 anni (Figura 4).

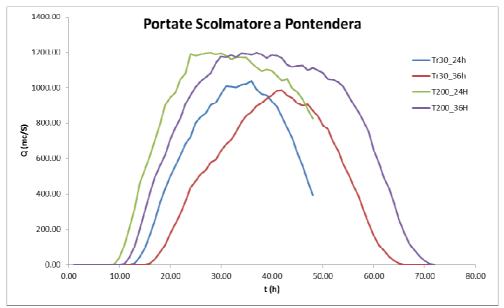


Figura 4. Idrogramma di piena delle portate derivate dal F. Arno

Oltre a questi dati sono stati forniti quelli del canale Usciana per le stesse durate e tempi di ritorno. Il contributo è da sommarsi a quello proveniente dal F. Arno direttamente in testa al Canale Scolmatore.

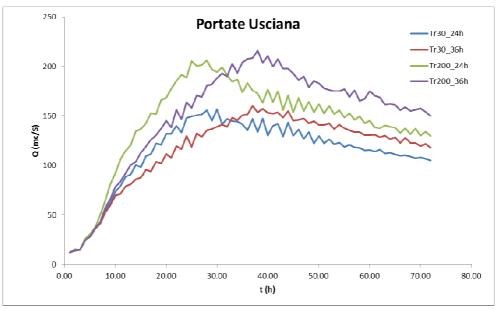


Figura 5. Idrogramma di piena delle portate del Canale Usciana

Procedendo verso valle si hanno una serie di contributi i cui dati sono stati ricavati da studi esistenti e da elaborazioni specifiche. In particolare si sono applicati modelli idrologici per piogge relative alle durate ed ai tempi di ritorno indicati in precedenza. Tali modelli sono stati applicati alle pluviometrie della Regione Toscana ed a ietogrammi ad intensità costante. Di seguito le principali caratteristiche dei bacini investigati. Per Fossa Nuova, T. Tora, T. Isola ed Emissario Bientina si fa riferimento a quanto indicato nella relazione PT150-13-COL-R01-01. Per gli altri si sono considerati i dati riportati nello Studio idrologico-idraulico del territorio comunale dell'Ing. Lucia effettuato per il comune di Crespina.

Tabella 7 Parametri idrologici di alcuni affluenti dello Scolmatore

BACINO	SUPERFICIE (km²)	CN	TC (h)	R (Clark)	Pluviometro (topoieto di riferimento)	Fonte
Orcina	5.23	86	1.24	-	Pontedera	Studio Ing. Lucia
Crespina	14.6	83	3.47	-	Pontedera	Studio Ing. Lucia
Zannone	20.3	84	2.35	-	Pontedera	Studio Ing. Lucia
Fossa Chiara	42	86	25.92	26	Coltano	

Si sono poi considerati i contributi dei vari impianti idrovori che scaricano nello Scolmatore (quasi tutti indirettamente attraverso il Fossa Chiara e l'Emissario del Bientina). Il contributo di detti impianti è stato considerato costante nel tempo, procedendo così in via cautelativa.

Tabella 8 Portate degli impianti idrovori

IDROVORA	PORTATA mc/s)
Ragnaione	13.6
Padulella	0.5
Interporto	15
Pisa sud	12
Calambrone	4.2
La Vettola	3.75
Aeroporto	9
TOTALE	58.05

Gli idrogrammi di piena sono riportati nelle figure che seguono.

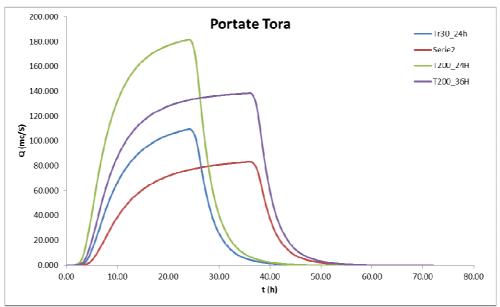


Figura 6. Idrogramma di piena del T. Tora

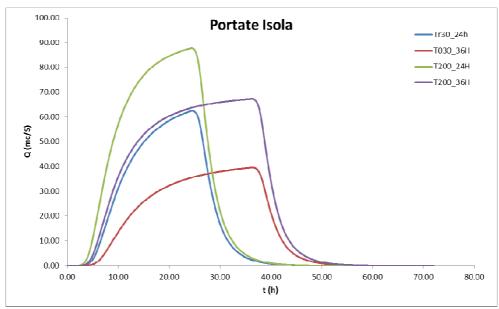


Figura 7. Idrogramma di piena del T. Isola

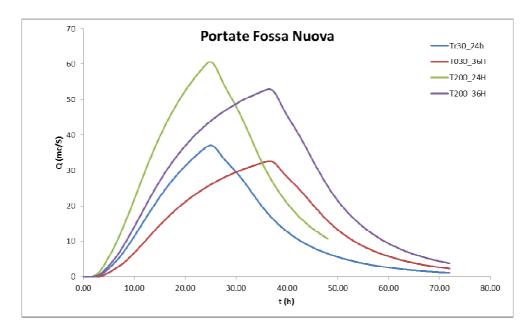


Figura 8. Idrogramma di piena del F. Nuova

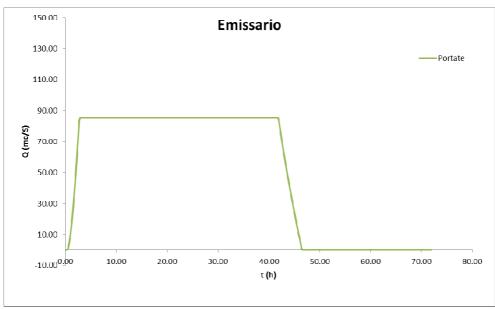


Figura 9. Idrogramma di piena Emissario Bientina

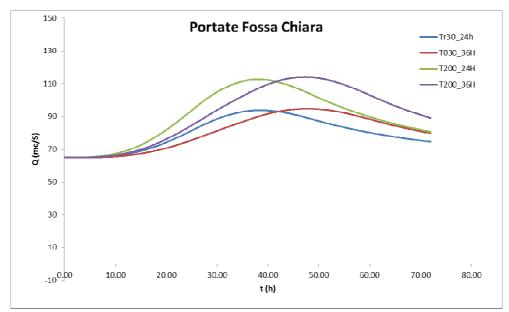


Figura 10. Idrogramma di piena Fossa Chiara con contributo idrovore

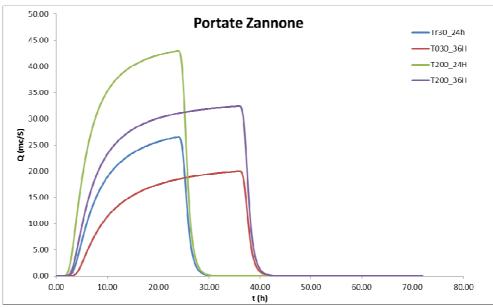


Figura 11. Idrogramma di piena del F. Zannone

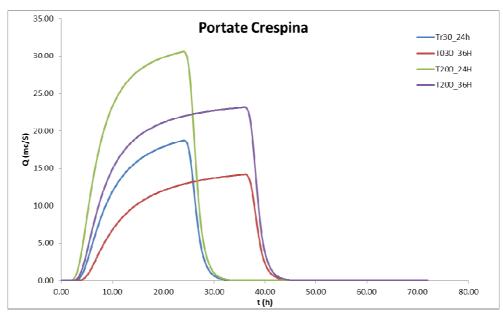


Figura 12. Idrogramma di piena del T. Crespina

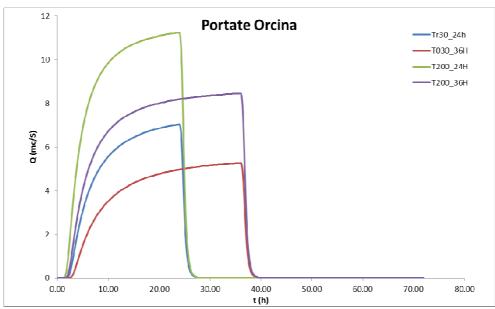


Figura 13. Idrogramma di piena del T. Orcina

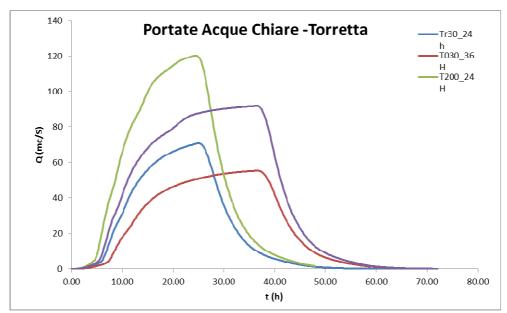


Figura 14. Idrogramma di piena del Fosso Acquechiare

Si riportato i valori riassuntivi delle portate nei vari tratti ricavati dal progetto definitivo dello Scolmatore dell'Arno e ricavati nel presente studio

TRATTO	PROGETTO SCOLMATORE		PRESENTE STUDIO	
	Tr=30	Tr=200	Tr=30	Tr=200
A MONTE TORA	1223	1710	1176	1527
TRA TORA E FOSSA NUOVA	1271	1828	1209	1733
TRA FOSSA NUOVA ED EMISSARIO	1294	1867	1242	1793
TRA EMISSARIO E FOCE	1498	2131	1471	2089

2. STUDIO IDRAULICO

Le modellazioni sono state eseguite con le sezioni dello studio idraulico del progetto esecutivo di adeguamento del canale scolmatore. Le portate sono riassunte in Tabella 9. Si sono considerate quelle derivate dai dati forniti dall'Autorità di Bacino dell'Arno

Tr30 (24h) **Immissione** Tr30 (36h) Tr2000 (24h) Tr200 (26h) Sezione Arno/Usciana 1405.96 131 1173.31 1137.63 1403.37 Zannone/Crespina 1452.80 88 1173.31 1138.19 1454.40 Orcina 83 1175.85 1526.85 1152.38 1551.62 Isola 73 1173.31 1138.19 1464.05 1459.79 Tora 49 1182.74 1209.14 1665.20 1733.30 Fossa nuova 1241.67 21 1210.62 1793.09 1717.41 Emissario/Navicelli/Fos sa Chiara 1435.98 1470.77 2089.30 1997.02

Tabella 9 Portate per l'analisi del canale Scolmatore

Sono stati analizzati 2 scenari:

- 1) quota allo sbocco di 0.7 m sul l.m.m; coefficiente di scabrezza d'alveo (Manning)
- 2) quota allo sbocco di 0.3 m sul l.m.m; coefficiente di scabrezza d'alveo (Manning) 0.025

2.1 ANALISI IN MOTO PERMANENTE

L'analisi è stata eseguita utilizzando il codice di calcolo HEC-RAS che è in grado di fornire i profili liquidi dei corsi d'acqua, oggetto della simulazione, basandosi su di un'analisi a moto permanente ed a moto vario monodimensionale. La procedura di calcolo si basa sulla soluzione dell'equazione dell'energia con le perdite di carico valutate mediante l'equazione di Manning

Gli scenari analizzati hanno evidenziato una non sostanziale influenza della condizione allo sbocco in quanto a causa delle elevate portate in arrivo il punto di equilibrio delle spinte idrodinamiche è spostato ben più a largo della sezione terminale del tratto analizzato.

La simulazione idraulica è stata effettuata per tempi di ritorno pari a 30 e 200 anni (Figura 16) e per durate di 24 e 36h. In tutti ali scenari la portata liquida è ben al di sopra della sommità arginali con problematiche che pertanto risultano essere diffuse in tutta l'asta fluviale, in particolare nel territorio del Comune di Collesalvetti.

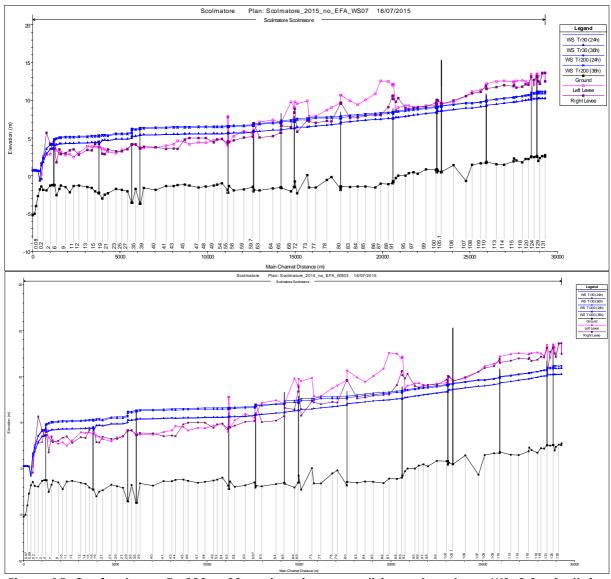


Figura 15 Confronto per Tr=200 e 30 anni anni con condizione al contorno WS=0.3m (sotto) e WS=0.7m (sopra)

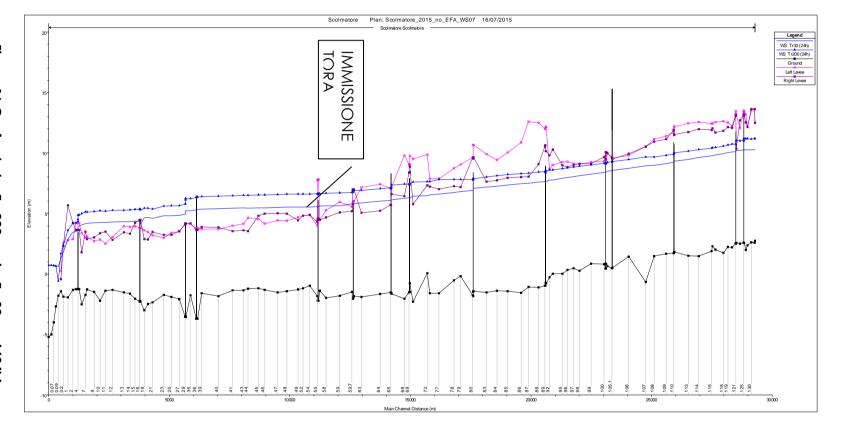
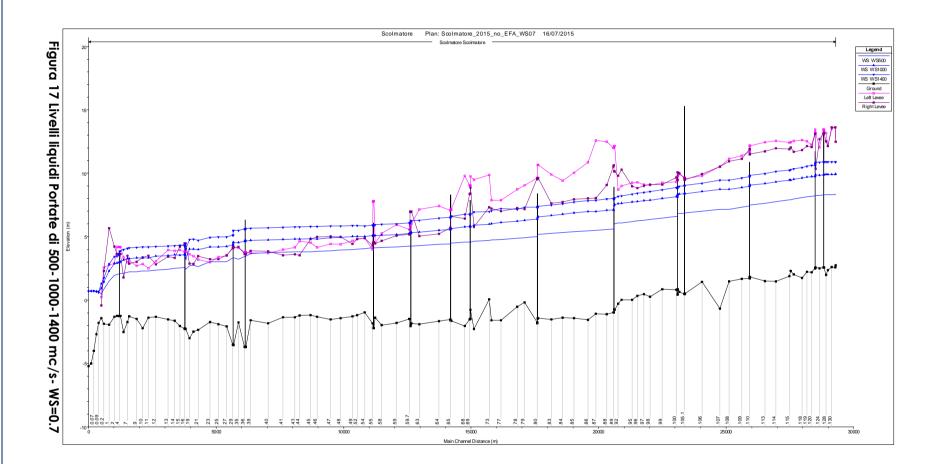


Figura 16 Confronto tra Tr=200 anni e Tr=30 anni (24h)


Solo nella parte a monte le condizioni d'alveo risultano essere meno critiche ed una riduzione dei livelli liquidi per effetto delle esondazioni fa ipotizzare il contenimento delle portate nelle sezioni disponibili. A valle invece l'effetto combinato dell'incremento di portata e della riduzione della pendenza di fondo (dovuta al progressivo interramento del corso d'acqua) contribuisce ad innalzare i livelli liquidi che crescono sensibilmente, in particolare a partire dall'immissione del Tora.

Verifiche della capacità

Le simulazioni sono state condotte anche nell'ipotesi di verificare le capacità limite allo stato attuale. In particolare sono state considerate tre portate costanti sull'intero tratto:

- 500 mc/s pari alla portata ordinaria per le piene del solo bacino dello Scolmatore
- 1000 mc/s pari alla portata corrispondente al manifestarsi di criticità
- 1400 mc/s pari alla portata di progetto

Ipotizzando un coefficiente di scabrezza pari a 0.025 si mota come la portata di 1000 mc/s rappresenti effettivamente una condizioni limite, oltre la quale si hanno fenomeni di esondazione (Figura 17). E' una situazione inoltre critica per i vari affluenti, che vengono rigurgitati fino alle quote arginali, specialmente nel tratto terminale (Emissario Bientina, Fossa Chiara, Antifosso Acquechiare,...). Le principali criticità si hanno nel tratto antistante l'Interporto sia in destra che sinistra idraulica. Il caso Tr=500 anni rappresenta una condizione di deflusso in sicurezza. Solo in alcuni punti (sezioni 40-41) potrebbero verificarsi piccoli sormonti.

Comune di Collesalvetti Studio Idrologico idraulico a supporto del regolamento urbanistico Studio integrativo Canale Scolmatore-rev1

2.2 ANALISI IN MOTO VARIO ED ESONDAZIONI

Lo schema delle esondazioni riprende quanto già indicato nella relazione R01. Il modello mono-bidimensionale è stato applicato su una griglia di dimensioni 17.5x8km celle 10x10m. La base topografica ad eccezione di poche zone non rientranti nel territorio comunale è costituita da dal LIDAR fornito dall'Amministrazione. La zona dell'Interporto, oggetto di recenti modifiche morfologiche è stata integrata con dati di rilievi specifici (anch'essi forniti per il tramite dell'Amministrazione) che individuano la quota terreno a circa +1.85 m sul l.m.m (Figura 18). Le simulazioni sono state fatte per eventi con Tr=30 e Tr=200 relative a durata di pioggia di 36h. Questo perché non è stata riscontrata significativa differenza in termini di valore di picco rispetto alla durata di 24h, a fronte di un maggiore contributo in termini di volumi defluiti.

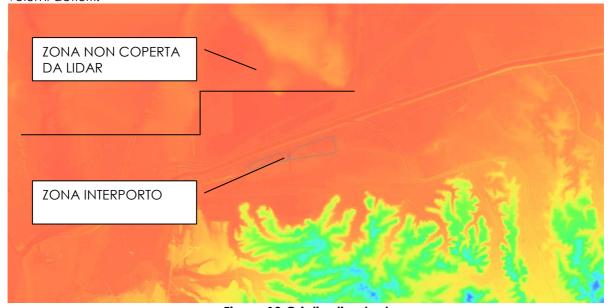


Figura 18 Griglia di calcolo

Il canale Scolmatore è stato trattato con schema monodimensionale. Quando il livello liquido supera le quote arginali si innesca il meccanismo di propagazione bidimensionale.

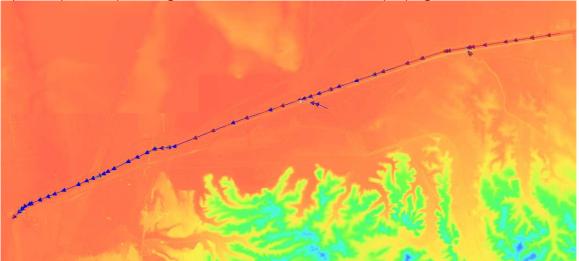


Figura 19 Tratto investigato

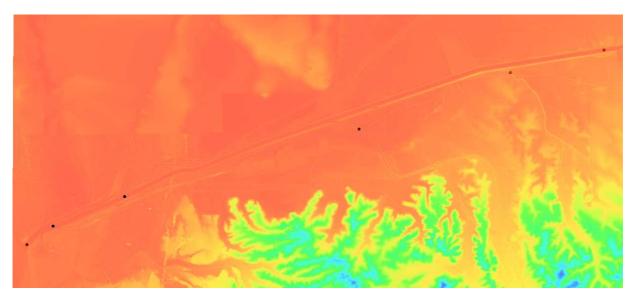


Figura 20 Punti di immissione delle portate

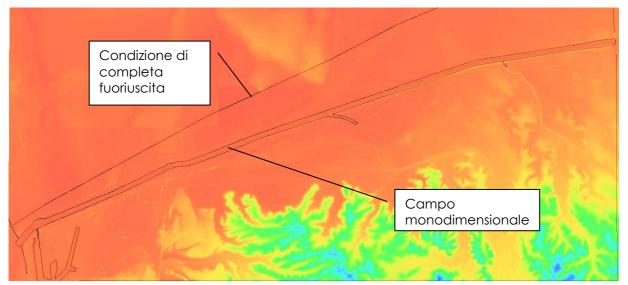


Figura 21 Condizioni al contorno

I risultati per Tr=30 anni hanno evidenziato che le prime fuoriuscite si verificano dopo circa 25h dall'inizio dell'evento in destra idraulica corrispondenza dell'abitato del Biscottino. Tali esondazioni potranno essere di estensioni ridotte se l'Emissario del Bientina ed il Fossa Nuova riuscissero a far smaltire le portate tracimate dal Canale Scolmatore. Le sezioni critiche risultano essere comprese tra la 40 e la 44.

Figura 22 Allagamenti Tr=30 anni a t=25 h

Dopo circa 28 h si hanno anche esondazioni di rigurgito del T. Tora (destra idraulica) ed in corrispondenza della sezioni 54 (destra idraulica a monte della confluenza con il T. Tora).

Figura 23 Allagamenti Tr=30 anni a t=28 h

Al passaggio del picco di piena (dopo circa 36 h) si assiste anche ad una ulteriore foriuscita

in corrispondenza del Faldo

Figura 24 Allagamenti Tr=30 anni a t=36 h

Dopo circa 48 h, si assiste ad un progressivo interessamento delle aree allagate senza comunque ulteriori contributi da parte dello Scolmatore. Le analisi non sono comunque ottimizzate per aree al di fuori del territorio comunale

Figura 25 Allagamenti Tr=30 anni a t=48 h

A fine simulazione lo scenario è indicato in Figura 26.

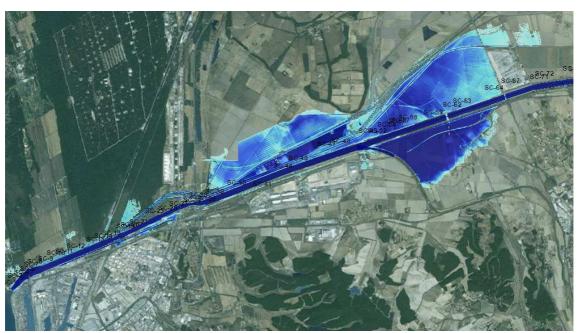


Figura 26 Allagamenti Tr=30 anni a t=60 h

Per quanto riguarda il caso Tr=200 anni, gli allagamenti si verificano dopo circa 17h comunque negli stessi punti visti in precedenza.

Figura 27 Allagamenti Tr=200 anni a t=17 h

Dopo circa 24h, oltre alle fuoriuscite indicate per il caso Tr=30 anni, si verificano ulteriori esondazioni anche in sinistra idraulica a valle della confluenza con il T. Tora.

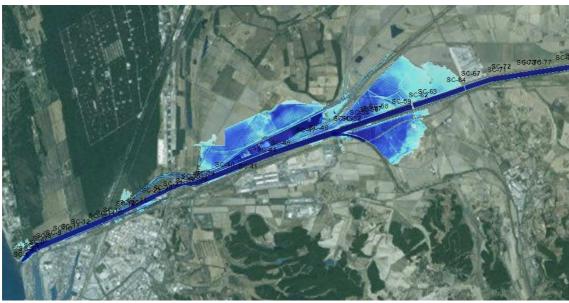


Figura 28 Allagamenti Tr=200 anni a t=24 h

La condizione di massima fuoriuscita si ha in corrispondenza del picco (36h) ma nelle ore successive continuano a verificarsi insufficienze che negli istanti successivi (48 e 60h) contribuiscono ad una notevole estensione delle aree allagate che nella parte a sud raggiunge anche gli argini del F.sso dell'Acquasalsa.

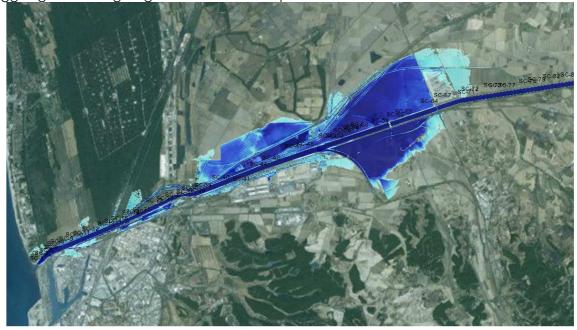


Figura 29 Allagamenti Tr=200 anni a t=36 h

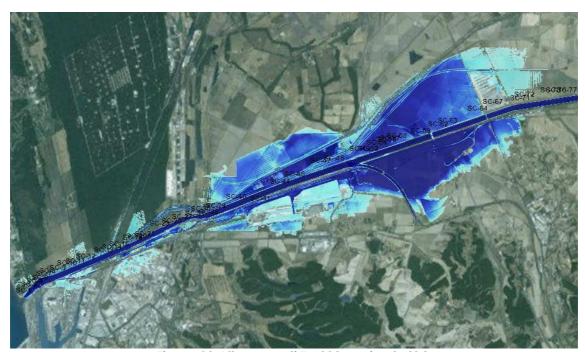


Figura 30 Allagamenti Tr=200 anni a t=48 h

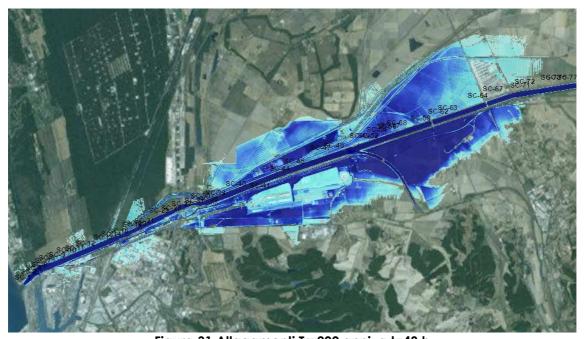


Figura 31 Allagamenti Tr=200 anni a t=48 h

Si evidenziano alcune criticità nella zona dell'interporto e dell'abitato di Stagno mentre sono solamente lambiti i centri di Vicarello e Guasticce.

Livorno, luglio 2015

Il tecnico Ing. Pietro Chiavaccini

